The Sentinel Landscapes (SL) initiative is comprised of geographic areas or sets of areas with a broad range of biophysical, social, economic and political conditions.
The Sentinel Landscapes (SL) initiative is comprised of geographic areas or sets of areas with a broad range of biophysical, social, economic and political conditions. A core component of the SL network is a set of Land Degradation Surveillance Framework (LDSF) sentinel sites, where intensive data collection is taking place using co-located biophysical and socio-economic surveys in order to collect information on a number of social-ecological indicators. The initial set of SL sites were established in 2012, growing into a network of 10 landscapes by the end of 2014.
Land Degradation Surveillance Framework Sentinel sites - center points.
Sampling points in Nicaragua sampled as part of the Sentinel Landscapes initiative - El Tuma Sentinel Site.
Location of LDSF sentinel sites that have been completed as part of the Sentinel Landscapes Initiative.
FTA Sentinel Site boundaries as per April 2015. This layer is regularly updated as SL teams refine boundaries and provide additional information. See also: http://www1.cifor.org/sentinel-landscapes/home.html
This map shows predicted soil erosion prevalence in %, based on the Land Degradation Surveillance Framework (LDSF) and RapidEye imagery.
Location of LDSF sentinel sites that have been completed as part of the Sentinel Landscapes Initiative.
Land Degradation Surveillance Framework Sentinel sites - center points.
LDSF sentinel site centroids for the sites with (biophysical) field data collection complete by mid-2016.
This map shows predicted soil erosion prevalence in %, based on the Land Degradation Surveillance Framework (LDSF) and RapidEye imagery.
This map shows predicted soil erosion prevalence in %, based on the Land Degradation Surveillance Framework (LDSF) and RapidEye imagery.
This map shows predicted soil erosion prevalence in %, based on the Land Degradation Surveillance Framework (LDSF) and RapidEye imagery.
This map shows predicted soil erosion prevalence in %, based on the Land Degradation Surveillance Framework (LDSF) and RapidEye imagery.
Fractional vegetation cover, based on the Soil Adjusted Total Vegetation Index (SATVI)* for December 2015. *Marsett, R.C., Qi, J., Heilman, P., Biedenbender, S.H., Watson, M.C., Amer, S., Weltz, M., Goodrich, D., Marsett, R., 2006. Remote Sensing for Grassland Management in the Arid Southwest. Rangel. Ecol. Manag. 59, 530–540. doi:10.2111/05-201R.1
Fractional vegetation cover, based on the Soil Adjusted Total Vegetation Index (SATVI)* for December 1988. *Marsett, R.C., Qi, J., Heilman, P., Biedenbender, S.H., Watson, M.C., Amer, S., Weltz, M., Goodrich, D., Marsett, R., 2006. Remote Sensing for Grassland Management in the Arid Southwest. Rangel. Ecol. Manag. 59, 530–540. doi:10.2111/05-201R.1
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Predicted soil erosion prevalence in 2012 based on MODIS reflectance data. The map shows erosion in % for each MODIS pixel.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil pH for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) for 2012. Value displayed when clicking on the map using the "Identify" button is pH*100. For a detailed description of the methods used to generate this map see: Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225. doi:10.1016/j.geoderma.2015.06.023.
Map of soil organic carbon (SOC) in the topsoil (0-20cm) for the BRACED project watershed in Chad.
This map shows predicted soil erosion prevalence in %, based on the Land Degradation Surveillance Framework (LDSF) and RapidEye imagery.
Overview of LDSF sites that have been completed as part of the Sentinel Landscapes Initiative.
Boundaries of FTA Sentinel Landscapes boundaries as per August 2014.
The LDSF is designed to provide a biophysical baseline at landscape level, and a monitoring and evaluation framework for assessing processes of land degradation and the effectiveness of rehabilitation measures (recovery) over time.
The LDSF is designed to provide a biophysical baseline at landscape level, and a monitoring and evaluation framework for assessing processes of land degradation and the effectiveness of rehabilitation measures (recovery) over time. Updated on 2019-02-09
We work towards the application of GeoScience in real decision contexts, such as climate change adaptation, hydrological effects of changes in climate and land cover, targeting of agroforestry interventions, provision of soil fertility and surveillance advisory services for smallholder farmers, digital soil and land use/cover mapping, and measuring impacts of interventions, all using open source software.