Introduction to Machine Learning in R
Sebastian Palmas, Kevin Oluoch
2019/11/07

Introduction

This hands-on workshop is meant to introduce you to the basics of machine
learning in R: more specifically, it will show you how to use R to work well-
known machine learning algorithms, including unsupervised (k-means clus-
tering) and supervised methods (such as k-nearest neighbours, SVM, random
forest).

This introductory workshop on machine learning with R is aimed at partic-
ipants who are not experts in machine learning (introductory material will be
presented as part of the course), but have some familiarity with scripting in
general and R in particular.

We will be using sample datasets available in R and from free online
sources, just be sure that your internet is working to download some of the
data.

Objectives

The course aims at providing an accessible introduction to various machine
learning methods and applications in R. The core of the courses focuses on
unsupervised and supervised methods.

The course contains exercises to provide opportunities to apply learned
code.

At the end of the course, the participants are anticipated to be able to apply
what they have learnt, as well as feel confident enough to explore and apply
new methods.

The material has an important hands-on component and participants

Pre-requisites

+ Participants are expected to be familiar with the R syntax and basic plotting
functionality.

* R3.5.10or higher.

+ The wine dataset needs to be downloaded from an online repository.

Overview of Machine Learning

Machine learning is a method of data analysis that automates analytical model
building. It is a branch of artificial intelligence based on the idea that systems

INTRODUCTION TO MACHINE LEARNING INR 2

can learn from data, identify patterns and make decisions with minimal human
intervention.

Machine learning algorithms are often categorized as supervised or unsu-
pervised. In supervised learning, the learning algorithm is presented with la-
belled example inputs, where the labels indicate the desired output. Supervised
algorithms are composed of classification, where the output is categorical, and
regression, where the output is numerical. In unsupervised learning, no labels
are provided, and the learning algorithm focuses solely on detecting structure
in unlabelled input data.

Note that there are also semi-supervised learning approaches that use
labelled data to inform unsupervised learning on the unlabelled data to identify
and annotate new classes in the dataset (also called novelty detection).

Packages

R has multiple packages for machine learning. These are some of the most
popular:

+ caret: Classification And REgression Training

+ randomForest: specific for random forest algorithm
* nnet: specific for neural networks

* Rpart: Recursive Partitioning and Regression Trees
* e1071: SVM training and testing models

+ gbm: Generalized boosting models

* kernlab: also for SVM

| will use the caret package in R. caret can do implementation of vali-
dation, data partitioning, performance assessment, and prediction. However,
caret is mostly using other R packages that have more information about
the specific functions underlying the process, and those should be investi-
gated for additional information. Check out the caret home page for more
detail. We will also use randomForest for the Random Forest algorithm and
caretEnsemble for an example of an ensemble method.

In addition to caret, it's a good idea to use your computer’s resources
as much as possible, or some of these procedures may take a notably long
time, and more so with the more data you have. caret will do this behind
the scenes, but you first need to set things up. Say, for example, you have an
quad core processor, meaning your processor has four cores essentially acting
as independent CPUs. This is done by allowing parallel processing using the
doSNOW package.

The other packages that we will use are:

+ tidyverse: for data manipulation

*+ corrplot: for a correlation plot

http://caret.r-forge.r-project.org/

INTRODUCTION TO MACHINE LEARNING INR 3

If you don’t have them installed, please do:

install.packages("caret")
install.packages("caretEnsemble")
install.packages("tidyverse")
install.packages("corrplot")
install.packages("doSNOW")

install.packages("randomForest")

To start, let's load some packages:

library(caret)
library(corrplot)
library(tidyverse)

Data Set - Wine

We will use the wine data set from the UCI Machine Learning data repository.
These are results of a chemical analysis of wines grown in the same region in
Italy. The analysis determined the quantities of 13 constituents found in each
of the three types of wines.

The goal is to predict wine quality, of which there are 7 values (integers 3-
9). We will turn this into a binary classification task to predict whether a wine
is ‘good’ or not, which is arbitrarily chosen as 6 or higher. After getting the
hang of things one might redo the analysis as a multiclass problem or even
toy with regression approaches, just note there are very few 3s or 9s so you
really only have 5 values to work with. The original data along with detailed
description can be found here, but aside from quality it contains predictors
such as residual sugar, alcohol content, acidity and other characteristics of the
wine.

The original data is separated into white and red data sets. | have com-
bined them and created additional variables: color and good, indicating scores
greater than or equal to 6 (denoted as ‘Good’ or ‘Bad’).

wine_red <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequalit:
sep=”;”)
wine_white <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequal

sep=" ; n)

wine_red <- wine_red %>Y

mutate(color="red")

wine_white <- wine_white %>%

mutate(color="white")

https://archive.ics.uci.edu/ml/datasets/Wine+Quality

wine <- wine_red %>,
rbind (wine_white) %>%

mutate (white=1*(color=="white"),

write.csv(wine, file

INTRODUCTION TO MACHINE LEARNING INR 4

good=ifelse(quality>=6,"Good", "Bad") %>’ as.factor())

= "wine

.csv"

summary (wine)

fixed.acidity volatile.acidity
Min. : 3.800 Min. :0.0800

1st Qu.: 6.400 1st Qu.:0.2300

Median : 7.000 Median :0.2900

Mean 1 7.215 Mean :0.3397

3rd Qu.: 7.700 3rd Qu.:0.4000

Max. :15.900 Max. :1.5800

citric.acid residual.sugar

Min. :0.0000 Min. : 0.600

1st Qu.:0.2500 1st Qu.: 1.800

Median :0.3100 Median : 3.000

Mean :0.3186 Mean : 5.443

3rd Qu.:0.3900 3rd Qu.: 8.100

Max. :1.6600 Max. :65.800

#it chlorides free.sulfur.dioxide
Min. :0.00900 Min. 1.00

1st Qu.:0.03800 1st Qu.: 17.00

Median :0.04700 Median : 29.00

Mean :0.05603 Mean : 30.53

3rd Qu.:0.06500 3rd Qu.: 41.00

Max. :0.61100 Max. :1289.00

total.sulfur.dioxide density

Min. : 6.0 Min. :0.9871
1st Qu.: 77.0 1st Qu.:0.9923
Median :118.0 Median :0.9949
Mean :115.7 Mean :0.9947
3rd Qu.:156.0 3rd Qu.:0.9970
Max. :440.0 Max. :1.0390
pH sulphates

Min. :2.720 Min. :0.2200

1st Qu.:3.110 1st Qu.:0.4300

Median :3.210 Median :0.5100

Mean :3.219 Mean :0.5313

The following will show some basic numeric information about the data

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

3rd Qu.:3.320

Max. :4.010 Max. :2.000
alcohol quality
Min. : 8.00 Min. :3.000
1st Qu.: 9.50 1st Qu.:5.000
Median :10.30 Median :6.000
Mean :10.49 Mean :5.818
3rd Qu.:11.30 3rd Qu.:6.000
Max. :14.90 Max. :9.000

color white
Length:6497 Min. :0
Class :character 1st Qu.:1
Mode :character Median :1
Mean :0

3rd Qu.:1

Max. 01

good

Bad :2384
Good:4113

the corrplot: : corrplot function.

corrplot(cor(wine[, -c(13, 15)]),

method = "number",
tl.cex = 0.5)

fixed acidity

volatile.acidity

citric.acid

residual. sugar

chlorides

free.sulfur.dioxide

total.sulfur.dioxide

density

pH

sulphates

alcohol

quality

white.

1
1
1 0.55
1
10.72
0721
0.59% 1
-0.€9
49.65 0.7

3rd Qu.:0.6000

0

.0000
.0000
.0000
.7539
.0000
.0000

sulphates

alcohol
quality
vhite

~0.6490.8
0.6

0.4

0.2

1 0.6

INTRODUCTION TO MACHINE LEARNING IN R

We can visualize the correlations between all variables in the dataset with

5

INTRODUCTION TO MACHINE LEARNING INR 6

Data partition

The function createDataPartition from the caret package will produce
indices to use as the training set. In addition to this, we will normalize the
continuous variables to the [0,1] range. For the training data set, this will be
done as part of the training process, so that any subsets under consideration
are scaled separately, but for the test set we will go ahead and do it now

set.seed(1234) #so that the indices will be the same when re-run
trainIndices <- createDataPartition(wine$good,
p = 0.8,
list = F)
wine_train <- wine[trainIndices, -c(6, 8, 12:14)] #remove quality and color, as well as density and oth

wine_test <- wine[!l:nrow(wine) %in% trainIndices, -c(6, 8, 12:14)]

Random forest

Random Forests is a learning method for classification and regression. It is
based on generating a large number of decision trees, each constructed using
a different subset of your training set. These subsets are usually selected by
sampling at random and with replacement from the original data set. In the
case of classification, the decision trees are then used to identify a classifica-
tion consensus by selecting the most common output. In the event, it is used
for regression and it is presented with a new sample, the final prediction is
made by taking the average of the predictions made by each individual decision
tree in the forest.

The portion of samples that were left out during the construction of each
decision tree in the forest are referred to as the Out-Of-Bag (00B) dataset. As
we'll see later, the model will automatically evaluate its own performance by
running each of the samples in the 00B dataset through the forest.

Implementation
The R package randomForest is used to create random forests.

library(randomForest)

Warning: package ’randomForest’ was built

under R version 3.5.3

Tune The Forest

By “tune the forest” we mean the process of determining the optimal number
of variables to consider at each split in a decision-tree. Too many prediction

INTRODUCTION TO MACHINE LEARNINGINR 7

variables and the algorithm will over-fit; too few prediction variables and the
algorithm will under-fit. so first, we use tuneRF function to get the possible
optimal numbers of prediction variables. The tuneRF function takes two
arguments: the prediction variables and the response variable.

This function also returns a plot on how the error varies depending on the
number of prediction varialbles.

trf <- tuneRF(x=wine_train[,1:9], # Prediction wvariables

y=wine_train$good) # Response wvariable

mtry = 3 00B error = 17.31%
Searching left

mtry = 2 00B error = 17.93%
-0.03555556 0.05

Searching right ...

mtry = 6 00B error = 17.91%

-0.03444444 0.05

tuneRF returns the several numbers of variables randomly sampled as
candidates at each split (mtry). error.]J(https://en.wikipedia.org/wiki/
Out-of-bag_error) prediction error.

To build the model, we pick the number with the lowest [Out-of-Bag (00B)

0B Error
0173 0175 0177 0179
T R

(mintree <- trf[which.min(trf[,2]),1]1)

[1] 3

Fit The Model

We create a model with the randomForest function which takes as argu-
ments: the response variable the prediction variables and the optimal number
of variables to consider at each split (estimated above). We also get the func-
tion to rank the prediction variables based on how much influence they have in
the decision-trees’ results.

rf_model <- randomForest(x=wine_train[,-10], # Prediction variables
y=wine_train$good, # Response wvariable
mtry=mintree, # Number of wariables in subset at each split
importance = TRUE # Assess importance of predictors.

)

rf_model

##
Call:

randomForest(x = wine_train[, -10], y = wine_train$good, mtry = mintree, importance = TRUE)

https://en.wikipedia.org/wiki/Out-of-bag_error
https://en.wikipedia.org/wiki/Out-of-bag_error

INTRODUCTION TO MACHINE LEARNING INR 8

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 3

#it

#it 00B estimate of error rate: 16.62}

Confusion matrix:

Bad Good class.error

Bad 1389 519 0.2720126

Good 345 2946 0.1048314

We can have a look at the model in detail by plotting it to see a plot of
the number of trees against OOB error: the error rate as the number of trees
increase.

We can have a look at each variable’s influence by plotting their importance —

based on different indices given by the importance function.
Figure 1: Error rates on random forest model

0.30
L

Error
0.20

0.10
L

°

300 400 500

varImpPlot (rf_model, main="")

alcohol o alcohol o
volatile.acidity o volatile.acidity o
sulphates o total.sulfur.dioxide o
total.sulfur.dioxide o chlorides o
residual.sugar o residual.sugar o
pH o sulphates o
fixed.acidity o citric.acid o
chlorides o pH o
citric.acid o fixed.acidity o
1 T 1T T 1 T T T 1
60 100 140 0 100 300
MeanDecreaseAccuracy MeanDecreaseGini
Validation

We can check the model fitness against the test dataset

preds_rf <- predict(rf_model, wine_test[,-10])

confusionMatrix(preds_rf, wine_test[,10], positive=’Good’)

Confusion Matrix and Statistics
#it

#it Reference

Prediction Bad Good

#it Bad 337 98

https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/importance

INTRODUCTION TO MACHINE LEARNINGINR 9

#it Good 139 724

#it

Accuracy : 0.8174
#t 95% CI : (0.7953, 0.8381)
##t No Information Rate : 0.6333
#it P-Value [Acc > NIR] : < 2.2e-16
#i#t

Kappa : 0.5996
#it

Mcnemar’s Test P-Value : 0.009369
#it

Sensitivity : 0.8808
Specificity : 0.7080
Pos Pred Value : 0.8389
Neg Pred Value : 0.7747
#i# Prevalence : 0.6333
#it Detection Rate : 0.5578
Detection Prevalence : 0.6649
Balanced Accuracy : 0.7944
#it

’Positive’ Class : Good

#it

More information on Random Forests
* https://uc-r.github.io/random_forests

* https://towardsdatascience.com/random-forest-in-r-f66adf80ec9

k-Nearest Neighbors (k-NN)

We will predict if a wine is good or not. We have the data on good, so thisis a
problem of supervised classification.

Consider the typical distance matrix that is often used for cluster analysis
of observations. If we choose something like Euclidean distance as a metric,
each point in the matrix gives the value of how far an observation is from some
other, given their respective values on a set of variables.

k-NN approaches exploit this information for predictive purposes. Let us
take a classification example, and £ = 5 neighbors. For a given observation
x;, find the 5 closest k neighbors in terms of Euclidean distance based on the
predictor variables. The class that is predicted is whatever class the majority
of the neighbors are labeled as. For continuous outcomes we might take the
mean of those neighbors as the prediction.

So how many neighbors would work best? This is an example of a tuning

https://uc-r.github.io/random_forests
https://towardsdatascience.com/random-forest-in-r-f66adf80ec9

INTRODUCTION TO MACHINE LEARNING IN R

parameter, i.e. k, for which we have no knowledge about its value without doing
some initial digging. As such we will select the tuning parameter as part of the
validation process.

Implementation

The caret package provides several techniques for validation such as k-fold,
bootstrap, leave-one-out and others. We will use 10-fold cross validation. We
will also set up a set of values for k to try out.

train is the function used to fit the models. You can check all available
methods here. This function is used for: * evaluate, using resampling, the
effect of model tuning parameters on performance * choose the “optimal”
model across these parameters * estimate model performance from a training
set

You can control training parameters such as resampling method and it-
erations with the cv_opts function. In this case we will use a k-fold cross-
validation (cv) with 5 resampling iterations.

cv_opts = trainControl(method="cv", number=10)

knn_opts = data.frame(.k=c(seq(3, 11, 2), 25, 51, 101)) #odd to avoid ties
knn_model = train(good™., data=wine_train, method="knn",
preProcess="range", trControl=cv_opts,
tuneGrid = knn_opts)

knn_model

k-Nearest Neighbors

##

5199 samples

#it 9 predictor

2 classes: ’Bad’, ’Good’

##

Pre-processing: re-scaling to [0, 1] (9)

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 4679, 4678, 4679, 4679, 4680, 4679,

Resampling results across tuning parameters:

##

k Accuracy Kappa

#i#t 3 0.7518692 0.4574756
#i#t 5 0.7453311 0.4405051
7 0.7512978 0.4518213
9 0.7497564 0.4476991
11 0.7534099 0.4561257
25 0.7509106 0.4469177

10

http://topepo.github.io/caret/train-models-by-tag.html

INTRODUCTION TO MACHINE LEARNING INR 11

#it 51 0.7468703 0.4326833

101 0.7451462 0.4272734

#it

Accuracy was used to select the

optimal model using the largest value.
The final value used for the model was k
o= 11.

Additional information reflects the importance of predictors. For most
methods accessed by caret, the default variable importance metric regards
the area under the curve or AUC from a ROC curve analysis with regard to each
predictor, and is model independent. This is then normalized so that the least
important is 0 and most important is 100. Another thing one could do would
require more work, as caret doesn't provide this, but a simple loop could still
automate the process. For a given predictor x, re-run the model without z, and
note the decrease (or increase for poor variables) in accuracy that results.
One can then rank order those results. | did so with this problem and notice
that only alcohol content and volatile acidity were even useful for this model.
K-NN is susceptible to irrelevant information (you're essentially determining
neighbors on variables that don’t matter), and one can see this in that, if only
those two predictors are retained, test accuracy is the same (actually a slight
increase).

dotPlot (varImp (knn_model))

alcohol o
volatile.acidity °
chlorides o
fixed.acidity °
citric.acid °
total.sulfur.dioxide o
pH|
sulphates °
residual.sugar | ®
| | | | | |

0 20 40 60 80 100

Importance
Validation Now lets see how it works on the test set

preds_knn = predict(knn_model, wine_test[,-10])

confusionMatrix(preds_knn, wine_test[,10], positive=’Good’)

Confusion Matrix and Statistics

INTRODUCTION TO MACHINE LEARNING IN R

#it

Reference

Prediction Bad Good

#it Bad 276 130

#it Good 200 692

#i#

#i# Accuracy : 0.7458

#it 95% CI : (0.7211, 0.7693)
#it No Information Rate : 0.6333

#it P-Value [Acc > NIR] : < 2.2e-16
#it

#it Kappa : 0.4351

#it

Mcnemar’s Test P-Value : 0.0001457
#i#

Sensitivity : 0.8418

Specificity : 0.5798

#it Pos Pred Value : 0.7758

Neg Pred Value : 0.6798

Prevalence : 0.6333

Detection Rate : 0.5331
##t Detection Prevalence : 0.6872

#i#t Balanced Accuracy : 0.7108

#i#t

#it ’Positive’ Class : Good

#it

We get a lot of information here, but to focus on accuracy, we get around
75.04%. The lower bound (and p-value) suggests we are statistically predicting
better than the no information rate (randomly guessing).

Neural networks

Neural nets have been around for a long while as a general concept in artificial
intelligence and even as a machine learning algorithm, and often work quite
well. In some sense they can be thought of as nonlinear regression. Visually
however, we can see them in as layers of inputs and outputs. Weighted com-
binations of the inputs are created and put through some function (e.g. the
sigmoid function) to produce the next layer of inputs. This next layer goes
through the same process to produce either another layer or to predict the
output, which is the final layer. All the layers between the input and output
are usually referred to as ‘hidden’ layers. If there were no hidden layers then it
becomes the standard regression problem.

One of the issues with neural nets is determining how many hidden layers

12

INTRODUCTION TO MACHINE LEARNING INR 13

and how many hidden units in a layer. Overly complex neural nets will suffer
from a variance problem and be less generalizable, particularly if there is less
relevant information in the training data. Along with the complexity is the
notion of weight decay, however this is the same as the regularization function
we discussed in a previous section, where a penalty term would be applied to a
norm of the weights.

Parallel processing

In general, machine learning algorithms are computationally intensive, requir-
ing a lot of computing power. We can use parallel processing to significantly
reduce computing time of some of these algorithms’. If you are not set up for
utilizing multiple processors the following might be relatively slow. You can
replace the method with nnet and shorten the tuneLength to 3 which will be
faster without much loss of accuracy. Also, the function we are using has only
one hidden layer, but the other neural net methods accessible via the caret
package may allow for more, though the gains in prediction with additional
layers are likely to be modest relative to complexity and computational cost.
In addition, if the underlying function has additional arguments, you may pass
those on in the train function itself.

We will use parallel processing with type SOCKZ.

library (doSNOW)
cl <- makeCluster(3, type = "SOCK")
registerDoSNOW (makeCluster (3, type = "SOCK"))

Implementation

In here | reduce the nummber of maximum iterations maxit to save time.

nnet_model = train(good™., data=wine_train,
method="avNNet",
trControl=cv_opts,
preProcess="range",
tunelLength=5,
trace=F,
maxit=10)

nnet_model

Model Averaged Neural Network
##

5199 samples

9 predictor

2 classes: ’Bad’, ’Good’

't is also more efficient to computing NN
using GPU instead of the more general CPUS.

2|f you are using a Linux/GNU or mac0S
you can use the FORK type. In this case, the
environment is linked in all processors.

##

Pre-processing: re-scaling to [0, 1] (9)
Resampling: Cross-Validated (10 fold)

INTRODUCTION TO MACHINE LEARNING IN R

Summary of sample sizes: 4680, 4679, 4678, 4680, 4679, 4679,

Resampling results across tuning parameters:

#i

size
#it
##
##
##
##
##
#t
#i#
#it
#it
##
##
##
##
##t
##t
#it
#it
##
##
##
##
##
#it
#i#
#it

© © © © © N N N NN O o oo wWw wwwwe~r P P P =

Tuning parameter ’bag’ was held constant

decay
0e+00
le-04
1le-03
le-02
le-01
0e+00
le-04
1le-03
le-02
le-01
0e+00
le-04
1le-03
le-02
le-01
0e+00
le-04
1e-03
le-02
le-01
0e+00
le-04
1le-03
le-02
le-01

Accuracy

O o o o o o

. 7284013
. 7287841
. 7263277
.7291661
.7314834
.7089882
.7212815
.7216783
. 7289812
. 7243551
.7091598
.7184094
. 7243629
.7280134
. 7226288
. 7255075
. 7243606
.7199446
.7145766
.7251306
. 7258972
. 7307127
. 7289775
. 7276339
.7305152

at a value of FALSE
Accuracy was used to select the

optimal model using the largest value.

Kappa

O o o o o o

.3965111
.3885902
.3791323
.4007401
.3944406
.3167041
.3746202
.3634109
.3925674
.3574783
.3136761
.3554943
.3685528
.3808471
.3688245
.3693651
.3796744
.3509379
.3321129
.3804193
.3796424
.3972374
.3849989
.3877238
.3867421

The final values used for the model

were size = 1, decay = 0.1 and bag = FALSE.

Once you've finished working with your cluster, it's good to clean up and
stop the cluster child processes (quitting R will also stop all of the child pro-

cesses).

14

INTRODUCTION TO MACHINE LEARNING INR 15

stopCluster(cl)

Validation

preds_nnet = predict(nnet_model, wine_test[,-10])

confusionMatrix(preds_nnet, wine_test[,10], positive=’Good’)

Confusion Matrix and Statistics

#it

#it Reference

Prediction Bad Good

#it Bad 289 163

#it Good 187 659

#it

Accuracy : 0.7304
#it 95% CI : (0.7053, 0.7543)
No Information Rate : 0.6333
P-Value [Acc > NIR] : 7.158e-14
#it

Kappa : 0.4132
#it

Mcnemar’s Test P-Value : 0.2189
#it

Sensitivity : 0.8017
#it Specificity : 0.6071
#it Pos Pred Value : 0.7790
Neg Pred Value : 0.6394
Prevalence : 0.6333
#it Detection Rate : 0.5077
Detection Prevalence : 0.6518
Balanced Accuracy : 0.7044
#it

’Positive’ Class : Good
#it

More information on NNs
* https://www.datacamp.com/community/tutorials/neural-network-models-r
* https://www.analyticsvidhya.com/blog/2017/09/creating-visualizing-neural-network-in-r/

* https://datascienceplus.com/neuralnet-train-and-test-neural-networks-using-r/

https://www.datacamp.com/community/tutorials/neural-network-models-r
https://www.analyticsvidhya.com/blog/2017/09/creating-visualizing-neural-network-in-r/
https://datascienceplus.com/neuralnet-train-and-test-neural-networks-using-r/

INTRODUCTION TO MACHINE LEARNING INR 16

Ensemble method

You can combine the predictions of multiple caret models using the caretEnsemble
package.

library(caretEnsemble)

Warning: package ’caretEnsemble’ was built
under R version 3.5.3

Given a list of caret models, the caretStack function can be used to
specify a higher-order model to learn how to best combine the predictions of
sub-models together.

Let's first look at creating 4 sub-models for the ionosphere dataset, specifi-
cally:

+ Linear Discriminate Analysis (LDA)

« Logistic Regression (via Generalized Linear Model or GLM)
+ k-Nearest Neighbors (kNN)

- Random forest(rf)

Below is an example that creates these 4 sub-models. This is a slow pro-
cess.

Example of Stacking algorithms

create submodels

control <- trainControl(method="repeatedcv", number=10, repeats=3, savePredictions=TRUE, classProbs=TRU
algorithmList <- c(’lda’, ’glm’, ’knn’, ’rf’)

set.seed(1234)

models <- caretList(good“., data=wine_train, trControl=control, methodList=a1goritthist)

Warning in trControlCheck(x = trControl,
y = target): x$savePredictions == TRUE is
depreciated. Setting to ’final’ instead.

Warning in trControlCheck(x = trControl, y
= target): indexes not defined in trControl.
Attempting to set them ourselves, so each
model in the ensemble will have the same

resampling indexes.

results <- resamples(models)

summary (results)

#i#
Call:

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

summary.resamples (object

= results)

Models: lda, glm, knn, rf

Number of resamples: 30

Accuracy
Min.
lda 0.7013487
glm 0.7038462
knn 0.6653846
rf 0.7861272
3rd Qu.
lda 0.7548077
glm 0.7525289
knn 0.7081131
rf 0.8360577
Kappa
Min.
lda 0.3258011
glm 0.3289198
knn 0.2476846
rf 0.5292575
3rd Qu.
lda 0.4531663
glm 0.4489842
knn 0.3492237
rf 0.6432326

dotplot (results)

1st Qu.

. 7325991
. 7258766
.6826923
.8177885

Max.

. 7750000
.7677543
. 7480769
.8557692

1st Qu.

.4081795
.3908777
.2963154
.5996030

Max.

.5011152
.4822137
.4388797
.6858892

Median
0.7439844
0.7461538
0.6971154
0.8291747
NA’s

0

0
0
0

Median
0.4271401
0.4299979
0.3305481
0.6225940
NA’s

0

o O O

Mean

. 7428332
. 7418079
.6958994
.8275347

Mean

.4250502
.4238487
.3244994
.6204321

INTRODUCTION TO MACHINE LEARNING IN R

17

INTRODUCTION TO MACHINE LEARNING IN R

0.3 040506 0.70.8

Accuracy Kappa
rf e ©
lda) o
glm ® o
knn <} <)
I I I I I I I I
0.3 0.4 0.5 0.6 0.7 0.8
Accuracy Kappa

Confidence Level: 0.95

We can see that the Random Forests creates the most accurate model with an

accuracy of 82.75%.

When we combine the predictions of different models using stacking, it is
desirable that the predictions made by the sub-models have low correlation.
This would suggest that the models are skillful but in different ways, allow-
ing a new classifier to figure out how to get the best from each model for an

improved score.

If the predictions for the sub-models were highly corrected (>0.75) then
they would be making the same or very similar predictions most of the time

reducing the benefit of combining the predictions.

correlation between results

modelCor (results)

lda glm knn rf
1lda 1.0000000 0.9439576 0.1620105 0.4171421
glm 0.9439576 1.0000000 0.1901886 0.4099201
knn 0.1620105 0.1901886 1.0000000 0.1751962
rf 0.4171421 0.4099201 0.1751962 1.0000000

splom(results)

18

INTRODUCTION TO MACHINE LEARNING INR 19

Accuracy
~ 0.85
—égb g!p iip é@ﬁﬁ??
higs |

—0.85

e85
g :§85h|du _ @
& sy | @

hlds |
~ 0.8B5

wsis § (W | B

hlgs _|
Scatter Plot Matrix

We can see the LDA and GLM have high correlation and all other pairs of pre-
dictions have generally low correlation. Let's eliminate the glm method be-
cause it has the lowest accuracy.

algorithmList <- c(’lda’, ’knn’, ’rf’)

set.seed(1234)

models <- caretList(good~.,
data=wine_train,
trControl=control,
methodList=algorithmList)

Warning in trControlCheck(x = trControl,
y = target): x$savePredictions == TRUE is
depreciated. Setting to ’final’ instead.

Warning in trControlCheck(x = trControl, y
= target): indexes not defined in trControl.
Attempting to set them ourselves, so each
model in the ensemble will have the same

resampling indexes.
results <- resamples(models)

Let's combine the predictions of the classifiers using a simple linear model.
caretStack finds a a good linear combination of chosen classification mod-
els. It can use linear regression, elastic net regression, or greedy optimization.

stack using glm
stackControl <- trainControl (method="repeatedcv",
number=10, #number of resampling iterations

repeats=3, #the number of complete sets of folds to compute

INTRODUCTION TO MACHINE LEARNING INR 20

savePredictions=TRUE,
classProbs=TRUE)
set.seed(1234)
stack.glm <- caretStack(models,
method="glm",
metric="Accuracy",
trControl=stackControl)
print (stack.glm)

A glm ensemble of 2 base models: lda, knn, rf
##
Ensemble results:

Generalized Linear Model

##

15597 samples

#Hit 3 predictor

#it 2 classes: ’Bad’, ’Good’
#i#t

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 3 times)

Summary of sample sizes: 14038, 14038, 14038, 14036, 14038, 14037,
Resampling results:

##

Accuracy Kappa

0.8280646 0.6237795

We can see that we have lifted the accuracy to 75.34% which is a small
improvement over using SVM alone. This is also an improvement over using
random forest alone on the dataset, as observed above.

We can also use more sophisticated algorithms to combine predictions in
an effort to tease out when best to use the different methods. In this case, we
can use the random forest algorithm to combine the predictions. This method
is slower than using g1lm.

stack using random forest

set.seed(1234)

stack.rf <- caretStack(models,
method="rf",
metric="Accuracy",
trControl=stackControl)

note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 .

INTRODUCTION TO MACHINE LEARNING INR 21

print(stack.rf)

A rf ensemble of 2 base models: lda, knn, rf
##t

Ensemble results:

Random Forest

#i#

15597 samples

3 predictor

2 classes: ’Bad’, ’Good’
##

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 14038, 14038, 14038, 14036, 14038, 14037,

Resampling results across tuning parameters:

#it

mtry Accuracy Kappa

2 0.8296253 0.6288798
3 0.8281290 0.6258433
##

Accuracy was used to select the

optimal model using the largest value.
The final value used for the model was
mtry = 2.

We can see that this has lifted the accuracy to 96.26% an impressive im-
provement on SVM alone.

k-means clustering

K-means clustering is one of e simplest and popular unsupervised machine
learning algorithms. The objective of K-means is simple: group similar data
points into clusters and discover underlying patterns. A cluster refers to a
collection of data points aggregated together because of certain similarities.

You'll define a target number k, which refers to the number of centroids you
need in the dataset. A centroid is the imaginary or real location representing
the center of the cluster.

Every data point is allocated to each of the clusters through reducing the
in-cluster sum of squares.

In other words, the K-means algorithm identifies &£ number of centroids,
and then allocates every data point to the nearest cluster, while keeping the
centroids as small as possible.

The ‘means’ in the K-means refers to averaging of the data; that is, finding
the centroid.

INTRODUCTION TO MACHINE LEARNING INR 22

To process the learning data, the K-means algorithm in data mining starts
with a first group of randomly selected centroids, which are used as the begin-
ning points for every cluster, and then performs iterative (repetitive) calcula-
tions to optimize the positions of the centroids

It halts creating and optimizing clusters when either:

+ The centroids have stabilized - there is no change in their values because
the clustering has been successful.

 The defined number of iterations has been achieved.

Implementation

In R, we use
stats: :kmeans(x, centers = 3, nstart = 10)

where

+ X is a numeric data matrix
« centers is the pre-defined number of clusters

+ the k-means algorithm has a random component and can be repeated nstart
times to improve the returned model

To learn about k-means, let’s use the iris dataset with the sepal and petal
length variables only (to facilitate visualisation). Create such a data matrix and
name it iris_subset.

iris_subset <- iris 7>J, select(Sepal.Length, Petal.Length)

cl <- kmeans(iris_subset, 3, nstart = 10)
cl

K-means clustering with 3 clusters of sizes 58, 51, 41
#it

Cluster means:

Sepal.Length Petal.Length

1 5.874138 4.393103
2 5.007843 1.492157
3 6.839024 5.678049
##

Clustering vector:

[1122222222222222222222
[21]1 22222222222222222222
[41]1 22222222223131111111

INTRODUCTION TO MACHINE LEARNING INR 23

[61] 11111111111111113311
[81] 1111111111111 1111121
[101] 31 333313333331133331
[121] 31313311333333333313
[141] 3313331331

##

Within cluster sum of squares by cluster:

[1] 23.508448 9.893725 20.407805

(between_SS / total_SS = 90.5 %)

#it

Available components:

#it

[1] "cluster" "centers"
[3] "totss" "withinss"
[6] "tot.withinss" "betweenss"
[7] "size" "iter"

[9] "ifault"

og

°38g:8

00 O;SS 8
8gog,8°8°9°
°

o o

08
o g8

Petal.Length
4

plot(iris_subset, col = cl$cluster)

o8
°

5.8
Oeoggsegsacﬁg 8,

Due to the random initialization, one can obtain different clustering results.)
When k-means is run multiple times, the best outcome, i.e. the one that gen-
erates the smallest total within cluster sum of squares (SS), is selected. The
total within SS is calculated as:

For each cluster results:

Figure 2: k-means algorithm on sepal and
petal lengths

« for each observation, determine the squared euclidean distance from obser-
vation to centre of cluster
+ sum all distances

Note that this is a local minimum; there is no guarantee to obtain a global
minimum.

How to determine the number of clusters

We can check how the squared distances changes with different values of &
(centers).

ks <- 1:5

tot_within_ss <- sapply(ks, function(k) {
cl <- kmeans(iris_subset, k, nstart = 10)
cl$tot.withinss

B

plot(ks, tot_within_ss, type = "b")

INTRODUCTION TO MACHINE LEARNING INR 24

500
|

tot_within_ss
300
|

100
|
o

More information on k-means
* https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/

* https://towardsdatascience.com/clustering-analysis-in-r-using-k-means-73ecadfb7967

Literature

* http://topepo.github.io/caret/index.html
* https://lgatto.github.io/IntroMachinelLearningWithR/

+ Anintroduction to Machine Learning with Applications in R. http://web.
ipac.caltech.edu/staff/fmasci/home/astro_refs/ML_inR.pdf

https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/
https://towardsdatascience.com/clustering-analysis-in-r-using-k-means-73eca4fb7967
http://topepo.github.io/caret/index.html
https://lgatto.github.io/IntroMachineLearningWithR/
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/ML_inR.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/ML_inR.pdf

	Introduction
	Packages
	Data Set – Wine
	Random forest
	k-Nearest Neighbors (k-NN)
	Neural networks
	Ensemble method
	k-means clustering
	Literature

